3/4 B.Tech - SIXTH SEMESTER

EC6T3	Microwave Engineering	Credits: 3
Lecture: 3 periods/week	Inte	ernal assessment: 30 marks
Tutorial: 1 period /week	Semester	end examination: 70 marks

Prerequisites: Antennas and Wave Propagation (EC5T4)

Course Objectives:

- To identify various microwave bands in frequency spectrum and to know their applications in different fields
- To understand the limitations of conventional tubes to operate in microwave region and to learn constructional details of various microwave tubes and solid state devices.
- To analyze single port and multiport passive waveguide components using their scattering parameters
- To learn the procedures to measure various important parameters in microwave engineering

Learning Outcomes:

Student will be able to

- Know various frequency bands of microwave range and their designations in electromagnetic spectrum and applications of microwaves.
- Design the microwave bench setup with different wave guide components.
- Use various microwave tubes and microwave solid state devices for high frequency applications to overcome the disadvantages of conventional tubes
- Measure the characteristic values of microwave components by conducting several tests on microwave bench setup

UNIT – I

Microwave Spectrum, Bands and applications, Limitations of conventional tubes at microwave frequencies

Microwave Tubes: Linear Beam Tubes (O-type): Two Cavity Klystron: Velocity modulation, Bunching process, Output power and Beam loading, Multicavity Klystron Amplifier: Beam current density, Output current, Reflex Klystron: Velocity modulation, Power output and Efficiency.

Microwave Crossed Field Tubes (M Type): Cylindrical Magnetron (Qualitative analysis only), Forward Wave Cross Field Amplifier, Backward Wave Oscillator and Backward Wave Amplifiers.

Helix Traveling Wave Tube Amplifiers, Amplification process, Wave modes and Gain considerations.

UNIT – II

Microwave Passive Components – I: Waveguide Sections: Matched terminations, Short circuit plungers, Waveguide bends, Corners and Twists, Probe and Loops, Attenuators and Phase Shifters of different types, Waveguide multiport junctions – E plane and H plane Tees, Magic Tee and its applications, Hybrid Ring.

S – Matrix calculation for Attenuator, Phase shifter, Multiport junctions

UNIT – III

Microwave Passive Components – **II:** Ferrite Devices: Faraday rotation, Gyrator, Isolator, Circulator, Directional couplers, Coupler parameters, Applications of directional couplers.

S – Matrix calculation for Gyrator, Isolator, circulator, Directional coupler.

Microwave Resonators: Waveguide cavity resonators, Cavity excitation and Tuning, Q-Factor calculation.

$\mathbf{UNIT} - \mathbf{IV}$

Solid State Devices: Microwave Tunnel Diode: Principle of operation and characteristics Transferred Electron Devices: Gunn diodes, RWH Theory, Modes of operation, LSA diodes, InP diodes Avalanche Transit Time Devices: Read diode, IMPATT diode, TRAPATT diode, BARITT diode. Parametric Amplifier: Non-linear reactance and Manley-Rowe power relations.

UNIT - V

Microwave Measurements: Description of microwave bench – Different blocks and their features, Precautions. Power measurement, Attenuation measurement, Impedance measurement, VSWR measurement, Frequency measurement, Measurements of cavity Q factor.

Learning Resources

Text books:

- 1. Foundations for Microwave Engineering R.E. Collin, John Wiley, 2nd Edition, 2005
- 2. Samuel Y Liao, "Microwave Devices and Circuits", 3rd edition, 2003, Pearson Education. **References:**
 - 1. Annapurna Das, Sisir K Das, "Microwave Engineering", 2nd edition, 2006, Tata McGraw Hill.
 - 2. Microwave Engineering- David M.Pozar, John Wiley & Sonsm, Inc., 2nd Edition, 2004
 - 3. Microwave Circuits and Passive Devices M.L. Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New Age International Publishers Ltd., 1995.
 - 4. Microwave Engineering Passive Circuits Peter A. Rizzi, PHI, 1999

Web Resources:

- 1. http://technology.niagarac.on.ca/courses/elnc1730/microsolid.ppt
- 2. http://www.intechopen.com/---/passive_microwave_components_ana_antenna
- 3. http://home.sandiego.edu/~ekim/e194rfs01/
- 4. http://www.slideshare.net/sarahkrystelle/lecture-notes-microwaves